Analysis of Counts

When data are counts or classes

- dead or alive
- pregnant or not
- healthy or diseased

When continuous data is broken into classes

- income levels

Uses

- 1. Test hypothetical ratios
- 2. Determine whether characteristics are inter-related
- 3. Test whether samples are from different populations

Chi square test

$$\chi^2 = \sum \frac{(\text{Obs} - \text{Exp})^2}{\text{Exp}}$$

Chi-square test provides an <u>approximation</u> for a binomial distribution Chi-square distribution is continuous and related to normal distribution

Best with:

- large sample size
- ratios close to 1:1
- expected classes all > 5
- use Yates correction when df = 1 and row and column total are predetermined.

Yates Correction

$$\chi^2 = \Sigma \frac{(|\mathsf{Obs} - \mathsf{Exp}| - 0.5)^2}{\mathsf{Exp}}$$

1. Test hypothetical ratios

Individuals classified in one way into 2 or more classes
Compare to hypothetical or expected ratio
Degrees of freedom = number of classes - 1
Example: frequency of observation of dominant genetic trait

2. Determine whether characteristics are inter-related

Individuals classified in two ways, in r and c classes Test for independence between classification criteria Degrees of freedom = (r - 1)(c - 1)

Example: Disease incidence in treated and untreated cattle

Null hypothesis:

no effect of treatment disease incidence is the same in both groups disease incidence and inoculation are independent probability is product of probabilities of disease and treatment

Disease incidence in cattle

I)	IS(ea	15	۴

Treatment	Healthy	Diseased	Total	
Treated Expected	88 (77)	12 (23)	100	
Untreated Expected	143 (154)	57 (46)	200	
Totals	231	69	300	

$$\chi^{2} = \sum \frac{(\text{Obs - Exp})^{2}}{\text{Exp}}$$

$$= \frac{(11)^{2}}{77} + \frac{(11)^{2}}{23} + \frac{(11)^{2}}{154} + \frac{(11)^{2}}{46} = 10.25$$

$$\chi^{2}_{.05,1} = 3.84$$

$$df = (2-1)(2-1) = 1$$

3. Test whether samples are from different populations

Calculate chi-square for each sample Calculate chi-square for pooled samples

Difference is chi-square for heterogeneity

Only uncorrected chi-squares are additive

Example: normal and virescent marigolds in 8 progenies

Hypothetical ratio is 3:1 for expected values

Progeny	Normal	Virescent	Chi ² (3:1)	Chi ² (3160:854)
1	315	85	3.00	0.023
2	602	170	3.65	0.094
3	868	252	3.73	0.578
4	174	42	3.56	0.575
5	192	48	3.20	0.348
6	165	39	3.76	0.723
7	161	43	1.67	0.028

8	629	175	4.48	0.019	
Totals			27.05	2.388	
Pooled	3106	854	24.91		
Heterogeneity			2.14	2.38	

Confidence Intervals

	Outcome 1	Outcome 2	Total
Situation 1	r ₁	n ₁ -r ₁	n_1
Situation 2	r_2	n ₂ -r ₂	$n_{\scriptscriptstyle 2}$
Situation k	r _k	n _k -r _k	n _k
Total	Σr	Ση-Στ	Ση

Expected value for Outcome 1 and Situation k is $n_k(\Sigma r/\Sigma n)$ Expected value for Outcome 2 and Situation k is $n_k(\Sigma n - \Sigma r)/\Sigma n$

Best estimate of Outcome 1 for Situation 1 is r₁/n₁

For sample mean = r/n

Distribution of means is approximately normal for large sample size

Probability of outcome r is p
For binomial distribution
expected mean value of r = np
variance is np(1-p)

For sample mean r/n

mean value of r/n = (np)/n = pvariance of r/n = p(1-p)/n

For large sample

95% confidence interval is $\frac{r}{n} \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$

$$\frac{1}{n} \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$$
 $\frac{r}{n} \pm 1.96 \sqrt{\frac{r/n(1-r/n)}{n}}$

Example: Seed germination trial

Estimating p by r/n

r = 80 seeds out of n = 100 seeds germinate

r/n = 0.8 or 80% germination

variance is

$$s^2 = \frac{r/n(1-r/n)}{n} = \frac{(0.8 \times 0.2)}{100} = 0.0016$$

$$SD = \sqrt{s^2} = 0.04$$

Confidence Interval = $0.080 \pm 1.96 \times 0.04 = (0.72, 0.88)$

Difference of two proportions

Population 1 proportion of successes = r_1/n_1 Population 2 proportion of successes = r_2/n_2 Difference = r_1/n_1 - r_2/n_2

Variance =

$$\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}$$

or

$$\frac{r_1 \, / \, n_1 (1 - r_1 \, / \, n_1)}{n_1} + \frac{r_2 \, / \, n_2 (1 - r_2 \, / \, n_2)}{n_2}$$

Confidence Interval

$$\left(\frac{r_1}{n_1} - \frac{r_2}{n_2}\right) \pm 1.96 \sqrt{\frac{r_1/n_1(1-r_1/n_1)}{n_1} + \frac{r_2/n_2(1-r_2/n_2)}{n_2}}$$

Example continued: New process

 r_2 = 175 seeds germinated out of n_2 = 200

Mean = r_2/n_2 = 175/200 = 0.875

Variance $2 = (0.875 \times 0.125)/200 = 0.00055$

Improvement in germination

Confidence interval

$$0.075 \pm 1.96\sqrt{0.0016 + 0.00055}$$
 or (-0.015 to 0.165)

Square of the ratio of the difference to the SD of the difference is equivalent to chi square $(0.075/0.046)^2 = 2.66$

Sample size for estimating proportions

Need an estimate of p

If p = 0.85 or
$$85\%$$

Variance = p(1-p)/n = (0.85)(0.15)/n = 0.1275/n

For SE = 0.01

$$0.1275/n = (0.01)^2$$

 $n = 1275$

For p = 0.3 and desired confidence interval \leq 0.1

Clwidth =
$$2(1.96)\sqrt{\frac{p(1-p)}{n}}$$

 $0.01 = 3.92\sqrt{\frac{(0.3)(0.7)}{n}}$
 $n = \frac{(3.92^2)(0.21)}{0.1^2} = 323$

To compare two percentages

for estimated n and p can calculate confidence interval most precise with equal sample sizes, ie same n null hypothesis is same p

If SE is less than 1/3 of difference desired to detect power is 4 to 1 chance of detecting difference at 5% significance

$$\sqrt{\frac{2(0.6)(0.4)}{n}} = \sqrt{\frac{0.48}{n}} = 0.0333$$
$$n = \frac{0.48}{0.0333^2} = 432$$